Triple Science: Physics Equations to recall

Equation number	Word equation	Symbol equation
1	weight = mass \times gravitational field strength (g)	W = m g
2	work done = force × distance (along the line of action of the force)	W = F s
3	force applied to a spring = spring constant × extension	F = k e
4	moment of a force = force × distance (normal to direction of force)	M = F d
5	pressure = force normal to a surface area of that surface	$p = \frac{F}{A}$
6	distance travelled = speed × time	s = v t
7	acceleration = change in velocity_ time taken	$a = \frac{\Delta v}{t}$
8	resultant force = mass × acceleration	F = m a
9 HT	momentum = mass × velocity	p = m v
10	kinetic energy = 0.5 × mass × (speed) ²	$E_k = \frac{1}{2}m \ v^2$
11	gravitational potential energy = mass × gravitational field strength (g) × height	$E_p = m g h$
12	power = energy transferred time	$P = \frac{E}{t}$
13	power = work done time	$P = \frac{W}{t}$
14	efficiency = useful output energy transfer total input energy transfer	
15	efficiency = useful power output total power input	
16	wave speed = frequency × wavelength	$v = f \lambda$
17	charge flow = current × time	Q = I t
18	potential difference = current × resistance	V = I R
19	power = potential difference × current	P = V I
20	power = (current) ² × resistance	$P = I^2 R$
21	energy transferred = power × time	E = P t
22	energy transferred = charge flow × potential difference	E = Q V
23	density = mass volume	$\rho = \frac{m}{V}$